SOLUTION OF A NONSTEADY-STATE POROUS COOLING
PROBLEM BY AN APPROXIMATE METHOD

P. A. Novikov and V. A. Eremenko UDC 536.24:532.685

The solution of porous cooling problems by an approximate method using electronic com-
puters is considered.

Porous materials are used most often in such constructions as heat exchangers, turbine buckets, etc.
The extensive usage of these materials is associated with the possibility of effective cooling of the appara-
tus walls because of filtration of the fluid or gas through the porous body.

Questions of the analytical computation of the temperature fields during porous cooling and evapora-
tive cooling through the pores have been examined in [1-5]. A solution of the steady-state problem of heat
propagation in a plate during porous cooling is given in [1], where it is shown that the temperatures of the
solid skeleton of material and the fluid being filtered are hardly different at any point of the porous struc-
ture. This result is quite essential since the analysis of the heat-transfer process under consideration
can be simplified greatly. Results of an analytical solution of the nonsteady-state problem of computing

the temperature fields of a porous plate are presented in [3],

It must be noted that existing analytical solutions of individual problems are not often successfully
represented in a form convenient for practical utilization., Hence, we have solved the nonsteady-state
porous cooling problem by an approximate method. The basic aim of such computations is to compare the
results of the analytical solution of the nonsteady-state problem [3] with the resuits of the approximate

method.
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Fig, 1. Change in the temperature of a porous plate
surface for Bi = 1: a) from the entrance of the cool-
ant: solid lines) approximate method of computation;
dashes) analytical computation; b) from the hot
stream (the results of the approximate and analytic
methods coincide),
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Fig, 2, Temperature profiles for Bi=1, a: 1) g=1;
2) 0.1; b: 1) g =2; 2)5; 3) 0.01,

The problem is formulated thus: initially, an infinite plate of finite thickness d has the identical
temperature T; everywhere. A coolant (liquid or gas) in a reservoir at a temperature T; = Tj proceeds
from the domain x << 0 into the plate at x = 0 and flows through the porous material at the constant mass
flow rate G;. Prior to the beginning of the porous cooling process the coolant in the reservoir and the
porous wall are in thermal equilibrium at the temperature T;. Then at the time 7= 0 the plate is suddenly
subjected to the effect of the surrounding gas medium with the constant temperature T,, >T; at x >6. The
coefficient o of convective heat exchange from the hot gas to the plate surface is assumed constant and
homogeneous over the surface for x =0,

The differential equation describing the nonsteady-state process of the change in temperature of the
porous plate during cooling is for this problem '
o°r Gy oT or 1
D I "I
Here T(x, 7) should satisfy the following boundary and initial conditions:
3]
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T(x, 0) =T, .

A general solution of (1), represented in dimensionless form in conformity with [3] will be
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Fig. 3. Temperature profiles for g =1: 1) Bi =0.1; 2)
0.5; 3) 10,

Fig. 4. Temperature profiles for gas filtration: solid
line) Gy = 5 - 1073 kg/sec; dashes) Gy =1- 1073 kg/sec;
Tgas = 373°K; Tipj = 283°K; 6 =1-10"m; F =0.58
-1072 m?% Ag =2.8 W/m-deg; & =0.55; cg=0.531-10°
J/kg - deg.

and the quantity M, is determined from the equation

2
(Mi——i—) tg M, — gM,
— Bi.

g
€ Vg, M,
(2)gn

The method of elementary thermal balances is used to solve this problem. The process of tempera-
ture variation in the porous plate, as described by (1) with the boundary and initial conditions (2), can then
be expressed by the following system of differential equations

47, = (=D F (Ty—T)—¢, G, (T;—T; )

€,

dt Ax - 4
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+ LU T 00, T @
(esGi) df;f =— B T 4 oF (T =T — 16y Ty — T,

Numerical integration of the system of differential equations obtained was carried out by the Euler
method on a Minsk-22 electronic computer. The results of computations, expressed in dimensionless
form, are represented in Figs. 1-3. The computed quantities obtained for different porous plate thick-
nesses and represented in dimensionless form are superposed exactly and agree well with the results of
the analytic solution. Such correspondence is achieved because of the sufficiently high value of the ratic
6/Ax and the small value of the integration spacing AT.

We also computed the filtration of hot dry air through a porous body into a vacuum. The temperature
profiles obtained by the numerical solution of (1) under the following boundary and initial conditions
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are shown in Fig. 4. It must be noted that the solution of porous cooling problems by an approximate method
by using an electronic computer affords the possibility of performing computations with a broad variation
in the initial parameters. '

NOTATION

T is the temperature, °K;
c] is the gpecific heat of the fluid, J/kg- deg;
Cg is the specific heat of the porous material, J/kg-deg; .
Ag is the coefficient of heat conduction of the porous material, W/m - deg;
T is the time, sec;
1) is the porous plate thickness, m;

is the coefficient of convective heat exchange, W/m?- deg;
Gg is the weight of the i-th layer of a porous element, kg;
F is the area of the plate, m?;
G is the mass flow rate, kg/sec;
i is the porosity;
Ax =38/n is the thickness of the i-th porous element, m;
Ps is the density of the porous material, kg/m?®;
£ is the emissivity of the porous material;
Co is the radiation coefficient of an absolutely black body, W/m?-deg;
$=(T-Tp/(Tm—TYp is the dimensionless temperature; '
£ =x/8 is the dimensionless running coordinate;
a =Ag/pgCs is the femperature conduction of the porous material;
Fo=at/5? is the Fourier number;
Bi=a6/Ag is the Biot number;
g =c;G16/F); is the dimensionless fluid flow rate.
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